CS210: Data Structures
Week 1

"Get your data structures correct first, and the rest of the program will
write itself."
- David Jones

Class Overview

* Introduction to many of the basic data structures
used in computer software

* Practice design and analysis of data structures.

* Practice using these data structures by writing
programs.

What is a Program

* A Set of Instructions

e Data Structures + Algorithms

* Data Structure = A Container stores Data
e Algoirthm = Logic + Control

Common Data Structures

* Array

e Stack

* Queue

* Linked List

* Tree

* Heap

* Hash Table

* Priority Queue

How many Algorithms?

e Countless

Which Data Structure or Algorithm is better?

* Must Meet Requirement
* High Performance
* Low RAM footprint

* Easy to implement
* Encapsulated

Algorithm Specification

* An is a finite set of instructions that
accomplishes a particular task.

* Criteria
* input: zero or more quantities that are externally supplied
e output: at least one quantity is produced
» definiteness: clear and unambiguous
* finiteness: terminate after a finite number of steps
 effectiveness: instruction is basic enough to be carried out

Algorithm Specification

* Representation
* A natural language, like English or Chinese.
* A graphic, like flowcharts.

e Algorithms + Data structures = Programs [Niklus Wirth]

Algorithm Specification

 Example 1.1 [Selection sort]:

* From those integers that are currently unsorted, find the
smallest and place it next in the sorted list.

[0l a1 2] B8] [4]

0O 10

1 10 20

2 10 20 30

3 10 20 30 40
for (1 = 0; 1 < n: 1i++) {

Examine list[1] to list[n-1] and suppose that the
smallest integer 1s at list[min];

[Interchange list[1] and list[min];

}

Program 1.1: Selection sort algorithm

* Program 1.3 contains a
complete program which
you may run on your
computer

#include <stdio.h>
#include <math.h>
#define MAX_SIZE 101
#define SWAP(x,y,t) ((t) = (x), (x)= (y), (y) = (t))
void sort(int [],int); /*selection sort */
void main(void)
{
int i,n;
int list [MAX-SIZE];
printf ("Enter the number of numbers to generate: ");
scanf ("%d", &n) ;

if(n< 1 || n> MAX-SIZE) {
fprintf (stderr, "Improper value of n\n");
exit(1l);

}

for (i = 0; 1 < n; i++) {/*randomly generate numbers*/
list[i] = rand() % 1000;

printf("%d ",list([i]);
}
sort (list,n);
printf ("\n Sorted array:\n ");

for (i = 0; 1 < n; i++) /* print out sorted numbers */
printf("%d ",list[i]);
printf ("\n") ;

}

void sort (int list[],int n)

{

int i, j, min, temp;

for (i = 0; 1 < n-1; 1i++) {
min = i;
for (j = i+1l; j < n; Jj++)
if (list[j] < list[min])

min = j;
SWAP(list[i],list[min], temp) ;

}

Program 1.3: Selection sort

10

Data Structures: What?

* Need to organize program data according to problem
being solved

- A data object and a set of
operations for manipulating it
* List ADT with operations insert and delete
* Stack ADT with operations push and pop

11

Data Structures: Why?

* Program design depends crucially on how data is structured for use
by the program
* Implementation of some operations may become easier or harder
* Speed of program may dramatically decrease or increase
* Memory used may increase or decrease
* Debugging may be become easier or harder

Data abstraction

* Data Type
A is a collection of and a set of
that act on those objects.

* For example, the data type consists of :
* the objects

* the operations

Terminology

e Abstract Data Type (ADT)

 Mathematical description of an object with set of operations
on the object. Useful building block.

e Algorithm

* A high level, language independent, description of a step-by-
step process

* Data structure

* A specific family of algorithms for implementing an abstract
data type.

* Implementation of data structure
* A specificimplementation in a specific language

Data Structure Concepts

* Data Structures are containers:
* they hold other data
 arrays are a data structure
e ...so are lists

e Other types of data structures:

e stack, queue, tree,
binary search tree, hash table,
dictionary or map, set, and on and on

15

Core Operations

e Data Structures will have 3 core operations
* a way to add things
* a way to remove things
* a way to access things

* More operations added depending on what data structure is designed
to do

Performance analysis

* Criteria
e |s it correct?
e |s it readable?

e Performance Analysis

e space complexity: storage requirement: How much storage does it
consume.

* time complexity: computing time: What is the running time of the
algorithm.

 Different algorithms may correctly solve a given task
 Which one should | use?

