
CS210: Data Structures
Week 1

"Get your data structures correct first, and the rest of the program will
write itself."

- David Jones

1

Class Overview

• Introduction to many of the basic data structures
used in computer software
• Understand the data structures

• Analyze the algorithms that use them

• Know when to apply them

• Practice design and analysis of data structures.

• Practice using these data structures by writing
programs.

2

What is a Program

• A Set of Instructions

• Data Structures + Algorithms

• Data Structure = A Container stores Data

• Algoirthm = Logic + Control

3

Common Data Structures

• Array

• Stack

• Queue

• Linked List

• Tree

• Heap

• Hash Table

• Priority Queue

4

How many Algorithms?

• Countless

5

Which Data Structure or Algorithm is better?

• Must Meet Requirement

• High Performance

• Low RAM footprint

• Easy to implement
• Encapsulated

6

Algorithm Specification

• An algorithm is a finite set of instructions that
accomplishes a particular task.

• Criteria
• input: zero or more quantities that are externally supplied

• output: at least one quantity is produced

• definiteness: clear and unambiguous

• finiteness: terminate after a finite number of steps

• effectiveness: instruction is basic enough to be carried out

7

Algorithm Specification

• Representation
• A natural language, like English or Chinese.

• A graphic, like flowcharts.

• Algorithms + Data structures = Programs [Niklus Wirth]

8

• Example 1.1 [Selection sort]:
• From those integers that are currently unsorted, find the

smallest and place it next in the sorted list.

i [0] [1] [2] [3] [4]
- 30 10 50 40 20
0 10 30 50 40 20
1 10 20 40 50 30
2 10 20 30 40 50
3 10 20 30 40 50

Algorithm Specification

9

• Program 1.3 contains a
complete program which
you may run on your
computer

10

Data Structures: What?

• Need to organize program data according to problem
being solved

• Abstract Data Type (ADT) - A data object and a set of
operations for manipulating it
• List ADT with operations insert and delete

• Stack ADT with operations push and pop

11

Data Structures: Why?

• Program design depends crucially on how data is structured for use
by the program
• Implementation of some operations may become easier or harder

• Speed of program may dramatically decrease or increase

• Memory used may increase or decrease

• Debugging may be become easier or harder

12

Data abstraction

• Data Type
A data type is a collection of objects and a set of
operations that act on those objects.

• For example, the data type int consists of :

• the objects {0, +1, -1, +2, -2, …, INT_MAX, INT_MIN}

• the operations +, -, *, /, and %.

13

Terminology

• Abstract Data Type (ADT)
• Mathematical description of an object with set of operations

on the object. Useful building block.

• Algorithm
• A high level, language independent, description of a step-by-

step process

• Data structure
• A specific family of algorithms for implementing an abstract

data type.

• Implementation of data structure
• A specific implementation in a specific language

14

Data Structure Concepts

• Data Structures are containers:
• they hold other data

• arrays are a data structure

• ... so are lists

• Other types of data structures:
• stack, queue, tree,

binary search tree, hash table,
dictionary or map, set, and on and on

15

Core Operations

• Data Structures will have 3 core operations
• a way to add things

• a way to remove things

• a way to access things

• More operations added depending on what data structure is designed
to do

16

Performance analysis

• Criteria
• Is it correct?
• Is it readable?
• …

• Performance Analysis
• space complexity: storage requirement: How much storage does it

consume.

• time complexity: computing time: What is the running time of the
algorithm.

• Different algorithms may correctly solve a given task
• Which one should I use?

17

